Tumour Tissue Microenvironment Can Inhibit Dendritic Cell Maturation in Colorectal Cancer
نویسندگان
چکیده
Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.
منابع مشابه
Inhibition of dendritic cell maturation by the tumor microenvironment correlates with the survival of colorectal cancer patients following bevacizumab treatment.
Development of bevacizumab has improved survival in colorectal cancer, however, currently there are no biomarkers that predict response to bevacizumab and it is unknown how it influences the immune system in colorectal cancer patients. Dendritic cells are important for the induction of an antitumor immune response; however tumors are capable of disabling dendritic cells and escaping immune surv...
متن کاملTumor conditioned media from colorectal cancer patients inhibits dendritic cell maturation
Tumors inhibit dendritic cell maturation and function in order to evade host immunity. We showed that conditioned media from tumor explant tissue, taken from metastatic colorectal cancer patients, significantly inhibits maturation of dendritic cells.
متن کاملMolecular Medicine in Practice Inhibition of Dendritic Cell Maturation by the Tumor Microenvironment Correlates with the Survival of Colorectal Cancer Patients following Bevacizumab Treatment
Development of bevacizumab has improved survival in colorectal cancer, however, currently there are no biomarkers that predict response to bevacizumab and it is unknown how it influences the immune system in colorectal cancer patients. Dendritic cells are important for the induction of an antitumor immune response; however tumors are capable of disabling dendritic cells and escaping immune surv...
متن کاملMesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?
The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial an...
متن کاملActivation of tolerogenic dendritic cells in the tumor draining lymph nodes by CD8+ T cells engineered to express CD40 ligand.
Tolerogenic dendritic cells in the tumor microenvironment can inhibit the generation and maintenance of robust antitumor T cell responses. In this study, we investigated the effects of local delivery of CD40L by tumor-reactive CD8(+) T cells on dendritic cell activation and antitumor T cell responses in the TRAMP model. To increase the immunostimulatory signal, CD40L was engineered, by deleting...
متن کامل